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Monte Carlo studies of three-dimensional O„1… and O„4… f4 theory related
to Bose-Einstein condensation phase transition temperatures

Xuepeng Sun
Department of Physics, University of Virginia, P.O. Box 400714, Charlottesville, Virginia 22904-4714, USA

~Received 7 August 2002; published 9 June 2003!

The phase transition temperature for the Bose-Einstein condensation~BEC! of weakly interacting Bose gases
in three dimensions is known to be related to certain nonuniversal properties of the phase transition of
three-dimensional O~2! symmetricf4 theory. These properties have been measured previously in Monte Carlo
lattice simulations. They have also been approximated analytically, with moderate success, by largeN approxi-
mations to O(N) symmetricf4 theory. To begin investigating the region of validity of the largeN approxi-
mation in this application, the same Monte Carlo technique developed for the O~2! model @P. Arnold and G.
Moore, Phys. Rev. E64, 066113~2001!# to O~1! and O~4! theories has been applied. The results indicate that
there might exist some theoretically unanticipated systematic errors in the extrapolation of the continuum value
from lattice Monte Carlo results. The final results show that the difference between simulations and next-to-
leading order largeN calculations does not improve significantly fromN52 to N54. This suggests that one
would need to simulate yet largerN’s to see true largeN scaling of the difference. Quite unexpectedly~and
presumably accidentally!, the Monte Carlo result forN51 seems to give the best agreement with the largeN
approximation among the three cases.

DOI: 10.1103/PhysRevE.67.066702 PACS number~s!: 02.70.Uu, 64.60.2i
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I. INTRODUCTION

The computation of the phase transition temperatureTc
for dilute or weakly interacting Bose gases has attracted c
siderable interest. Due to the nonperturbative nature of lo
distance fluctuations at the second-order phase transitio
large distance, the calculation of corrections to the ideal
formula forTc is nontrivial. In the dilute or weakly interact
ing limit, the correctionDTc[Tc2T0 to the ideal gas resul
T0 for a homogeneous gas can be parametrized as1

DTc

T0
5cascn

1/31O„asc
2 n2/3 ln~ascn

1/3!…, ~1.1!

whereasc is the scattering length of the two-particle intera
tion, n is the number density of the homogeneous gas,c is a
numerical constant, andO(•••) shows the parametric size o
higher-order corrections. Baymet al. @1# have shown that the
computation ofc can be reduced to a problem in thre
dimensional O(2)f4 field theory. In general, O(N) f4 field
theory is described by the continuum action

Scont5E d3xF1

2
~“f!21

1

2
rf21

u

4!
~f2!2G , ~1.2!

wheref5(f1 ,f2 , . . . ,fN) is anN-component real field. I
will focus exclusively on the case wherer has been adjuste
to be at the order or disorder phase transition for this the
for a given value of the quartic couplingu. The relationship

1For a clean argument that the first correction is linear inasc, see
Ref. @1#. For a discussion of higher-order corrections, see R
@2,3#.
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to Tc for the Bose-Einstein condensation found by Bay
et al. is that the constantc in Eq. ~1.1! is2

c52
128p3

FzS 3

2D G4/3

D^f2&c

u
, ~1.3!

wheref2[f1
21f2

21•••fN
2 , N52 and

D^f2&c[@^f2&c#u2@^f2&c#0 ~1.4!

represents the difference between the critical-point value
^f2& for the cases of~i! u being nonzero and~ii ! the ideal
gasu50. Thus, the computation of the first correction toTc
due to interactions is related to the evaluation ofD^f2&c in
three-dimensionalf4 theory.

Having tunedr to the phase transition,u is then the single
remaining parameter of the three-dimensional continuumf4

theory ~1.2!. The dependence of~ultraviolet-convergent!
quantities onu is determined by simple dimensional analys
and u has dimensions of inverse length. TheD^f2&c /u in
Eq. ~1.3! is dimensionless and so is a number independen
u in the continuum theory. Monte Carlo simulations of th
quantity in O~2! theory have givenc51.2960.05 @4# andc
51.3260.02 @5#.

One of the few moderately successful attempts to appr
mate this result with an analytic calculation has been thro
the use of the largeN approximation.~But see also the
fourth-order lineard expansion results of Refs.@7#. For a
brief comparison of the results of a wide spread of attem
to estimatec, see the introduction to Ref.@6# and also Ref.

s. 2This is given separately in Ref.@1# as DTc /T05
22mkBT0D^f2&c/3\2n and the identification ofu as 96p2asc/l2.
©2003 The American Physical Society02-1
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TABLE I. Simulation results forN51,2,4 and the NLO largeN results forD^f2&c /u. The difference
column shows the percentage excess of the magnitude of the largeN approximation result over the magnitud
of the simulation result.N52 simulation results are quoted from Ref.@5#.

N

D^f2&c /u
r c /u2(m̄5u/3)

SimulationSimulation LargeN Difference

1 20.000494(41) 20.0004990 21(8)% 0.0015249(48)
2 ~Ref. @5#! 20.001198(17) 20.001554 130(2)% 0.0019201(21)
4 20.00289(18) 20.003665 127(8)% 0.002558~16!
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@8#.! The procedure is to calculateD^f2&c /u for O(N)
theory in the limit whereN is arbitrarily large, and then
substitute the actual valueN52 of interest into the result
The largeN result was originally computed at leading ord
in 1/N by Baym, Blaizot, and Zinn-Justin@9# and was ex-
tended to next-to-leading order~NLO! in 1/N by Arnold and
Tomášik @10#, giving3

D^f2&c

u
52

N

96p2 F12
0.527 198

N
1O~N22!G . ~1.5!

SettingN52, one obtainsc;1.71, which is roughly 30%
higher than the results obtained by the Monte Carlo simu
tion of O~2! theory. Considering thatN52 has been treate
as large in this approximation, the result is fairly encoura
ing.

The goal of the present work is to further explore t
applicability of the largeN result~1.5! by testing it for other
values ofN. I have applied to other O(N) models the same
techniques used in Ref.@5# to simulate the O~2! model. In
this paper, I report the measurement ofD^f2&c /u for the
O~1! and O~4! theories. The final results, compared to t
largeN approximations of Eq.~1.5!, are given in Table I.

As a byproduct of the analysis, I also report the measu
ment of the critical valuer c of r. The coefficientr requires
ultraviolet renormalization and so is convention depende
In Table I, I report the dimensionless continuum values
r c /u2 with r c being defined by dimensional regularizatio
and modified minimal subtraction (MS) renormalization at a
renormalization scalem̄ set tou/3. Among other things, this
quantity can be related to the coefficient of the second-o
(asc

2 n2/3) correction toDTc @2,11#. One can convert to othe

choices of theMS renormalization scalem̄ by the ~exact!
identity

3If combining Eqs.~1.3! and~1.5!, note that Eq.~1.3! only applies
in the caseN52, which corresponds to a single-component id
gas. Alternatively, as a theoretical excercise, one could imagin
gas where each boson had a degenerate set ofN/2 internal quantum
states withU(N/2) symmetry for any evenN. In this case,T0

would be proportional toN, and Eq.~1.3! should have an additiona
factor of 2/N on the right-hand side. This factor of 1/N in Eq. ~1.3!
would cancel the overall factor ofN in Eq. ~1.3! when the two are
combined.
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u2
5

r MS~m̄2!

u2
1

~N12!

18~4p!2 ln
m̄1

m̄2

. ~1.6!

In Sec. II, I briefly review the algorithm and the necessa
background materials and formulas for improving the e
trapolations of the continuum and infinite-volume limit
Most of the technical details can be found in Ref.@5#. Sec-
tion III gives the simulation results and analysis. Section
is the conclusion from comparing the numerical results w
the NLO largeN calculation~1.5!.

II. LATTICE ACTION AND METHODS

The action of the theory on the lattice is given by

Slat5a3(
x

H 1

2
F lat~2¹ lat

2 !F lat1
1

2
r 0F lat

2 1
u0

4!
~F lat

2 !2J ,

~2.1!

wherea is the lattice size~not to be confused with the sca
tering lengthasc). I will work on simple cubic lattices with
cubic total volumes and periodic boundary conditions. As
Ref. @5# and as reviewed further below, the bare lattice o
erators and couplings (F lat ,F lat

2 ,r 0 ,u0) are matched to the
continuum, using results from lattice perturbation theory
improve the approach to the continuum limit for finite b
small lattice spacing.

I shall use the improved lattice Laplacian

¹2F~x!5a22(
i

F2
1

12
F~x12ai!1

4

3
F~x1ai!2

5

2
F~x!

1
4

3
F~x2ai!2

1

12
F~x22ai!G , ~2.2!

which ~by itself! hasO(a4) errors, rather than the standa
unimproved Laplacian

¹U
2 F~x!5a22(

i
@F~x1ai!22F~x!1F~x2ai!#,

~2.3!

which hasO(a2) errors. Readers interested in simulation r
sults with the unimproved kinetic term should see Ref.@23#.

Because the only parameter of the continuum theory~1.2!
at its phase transition isu, the relevant distance scale for th

l
a
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physics of interest is of order 1/u by dimensional analysis
To approximate the continuum infinite-volume limit, on
needs lattices with total linear sizeL, large compared to this
scale and lattice spacinga small compared to this scale. As
result,ua is the relevant dimensionless expansion param
for perturbative matching calculations intended to elimin
lattice spacing errors to some order ina. The analogous di-
mensionless parameter that will appear in the later disc
sions of the large volume limit isLu.

A. Matching to continuum parameters

To account for the lattice spacing errors, I have adap
the perturbative matching calculations to improve latt
spacing errors given in Ref.@5#, where the details of the
calculations can be found. Here I will simply collect th
results from that reference. The lattice action expresse
terms of continuum parameters is written in the form

Slat[a3(
x

H Zf

2
~¹latf!21

Zr

2
~r 1dr !f21

u1du

4!
~f2!2J .

~2.4!

The continuum approximate value forD^f2&c is theoreti-
cally expected to have the form

D^f2&c5Zr^f
2& lat2df21O~a2!. ~2.5!

For the improved Laplacian, the matching calculations h
been done to two-loop level (2l ) for Zf , Zr , dr , anddu,
and three loops (3l ) for df2, yielding

df3l
2 5

NS

4pa
1

N~N12!

6

Sj

~4p!2 u2
j

4p
Nra

1F S N12

6 D 2

j2S1
~N12!

18
@C423SC12SC2

1j ln~am̄ !#G Nu2a

~4p!3 , ~2.6a!

du2l5
~N18!

6

j

4p
u2a1F ~N216N120!

36 S j

4p D 2

2
~5N122!

9

C1

~4p!2Gu3a2, ~2.6b!

Zf,2l511
~N12!

18

C2

~4p!2 u2a2, ~2.6c!

Zr ,2l511
~N12!

6

j

4p
ua1F S N12

6 D 2S j

4p D 2

2
~N12!

6

C1

~4p!2G~ua!2, ~2.6d!
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~N12!

6

S

4p
ua1

~N12!

18~4p!2FC31 lnS 6

m̄
D 23SjG

3~ua!2, ~2.6e!

where, for the improved Laplacian~2.2!,

S.2.75238391130752, ~2.7a!

j.20.083647053040968, ~2.7b!

C1.0.0550612, ~2.7c!

C2.0.03344161, ~2.7d!

C3.20.86147916, ~2.7e!

C4.0.282. ~2.7f!

As shown in Ref.@5#, the result of this improvement is
that at fixed physical system sizeLu, the lattice spacing erro
of D^f2&c /u should beO(a2). However, as will be shown
in the following, my simulation results indicate that the
might still exist some linear coefficients even after applyi
formula ~2.5!. I assign an error to my continuum extrapol
tions that covers both linear and quadratic extrapolations

This has produced about 10% systematic error in the fi
value ofD^f2&c /u. The extrapolation ofr c /u2 on the other
hand hasO(a) error, since no improvement has been ma
Overall, the fitting formulas for the data taken at fixedLu are
given as

H D^f2&c

u J
Lu

5B11B2~ua!2, ~2.8a!

H r c

u2J
Lu

5D11D2~ua!, ~2.8b!

for a quadratic fit ofD^f2&c /u, and

H D^f2&c

u J
Lu

5B11B28~ua!, ~2.9a!

H r c

u2J
Lu

5D11D2~ua!, ~2.9b!

for a linear fit ofD^f2&c /u.

B. Algorithm and finite-volume scaling

Working in lattice units (a51) with the lattice action
~2.4!, I update the system by heat bath and multigrid me
ods @21#. At each level of the multigrid update, I perform
overrelaxation updates. Statistical errors are computed u
the standard jackknife method.

The strategy is to varyr at fixed u to reach the phase
transition point. In order to define a nominal ‘‘phase tran
tion’’ point in a finite volume, I use the method of Binde
2-3
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cumulants@22#. The Binder cumulant of interest is define
by

C5
^f̄4&

^f̄2&2
, ~2.10!

wheref̄ is the volume average off,

FIG. 1. ~a! Shows the simulation result forD^f2&c /u vs physi-
cal volume atua512 for O~1!; ~b! is the result of the difference
between the (768,12)* point and the infinite extrapolation;~c! is the
Lu→` extrapolations; and since we used the fitting formula
D^f2&c /u at (768,12)* ~2.5!, this difference depends only on th
results ofA2 but not onA1. In both~b! and~c!, the shaded areas ar
the quoted results. The confidence levels are given as the perce
numbers on top of the fitted values. ‘‘NA’’ stands for ‘‘nonappl
cable,’’ which means the number of the fitting parameters equals
number of fitted points. The numbers shown in all graphs and ta
are dimensionless.
06670
f̄[
1

VE d3x f~x!. ~2.11!

The nominal phase transition is defined as occurring w
C5C* , whereC* is a universal value that improves con
vergence to the infinite-volume limit.C* depends on the
shape and boundary conditions of the total lattice volume
not on the short distance structure. For cubic lattice volum
with periodic boundary conditions,C* .1.603(1) for O~1!
@16# and C* .1.095(1) for O~4! @17#. I have checked tha
the errors onC* are not significant for the purposes of th
application. Therefore, I have used the central values for
nominalC* .

r

age

e
es

FIG. 2. Simulation results forD^f2&c /u vs ua at fixed physical
volume (Lu)* 5768 for O~1!. The circular data are obtained from
Eq. ~2.5!, with df2 being given by Eq.~2.6a!. The star data are
obtained using the naive lattice resultD^F2&L[(^F2&
2NS/4p)/u0. It has linear1linear3logarithmic1quadratic depen-
dence onua. ~b! gives the fitting results for the quadratic fit and~c!
gives the fitting results for the linear fit.
2-4
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TABLE II. Fitting results forD^f2&c /u andr c /u2 using formula~2.15!. In the case ofD^f2&c /u, both a linear fit result and a quadrat
fit result for B1 are given. The final values are assigned to cover both fit results.

D^f2&c /u
A11A2(Lu)2d1yt fit B11B2(ua)2 fit B11B28(ua) fit D^f2&c /u5B12A23(Lu)2d1yt

N (Lu,ua)* A1 A23(Lu)2d1yt B1 O(ua)2 O(ua) Final

1 ~768,12! 20.0006199(40) 0.0001335~50! 20.000383(17) 20.003275(55)20.000517(18)20.0004610(74)20.000494(41)
4 ~144,3! 20.003023(92) 0.002978~92! 0.000007~26! 0.000163~37! 20.002971(96) 20.002815(99) 20.00289(18)

r c /u2

C11C2(Lu)2yt2v fit D11D2(ua) fit
N (Lu,ua)* C1 C2(Lu)2yt2v D1 r c /u25D12C2(Lu)2yt2v

1 ~768,12! 0.00274001~28! 20.00000178(22) 0.0015231~48! 0.0015249~48!

4 ~144,3! 0.0035035~62! 20.000183(12) 0.002375~10! 0.002558~16!
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In practice, it never happens that the simulation is do
precisely atr where C5C* . I instead simply simulate a
somer 5r sim close to it. I then use canonical reweighting
the time series data to analyzer ’s nearr sim and determiner
andD^f2& at C5C* .

A renormalization group analysis of the scaling of finit
volume errors shows that, when the method of Binder cum
lants is used, the values ofD^f2&c and r c scale at large
volumes as@5#

D^f2&c

u
.A11A2~Lu!2d1yt, ~2.12a!

r c

u2 .C11C2~Lu!2yt2v, ~2.12b!

for fixed ua. Here d53 is the dimension of space,yt
51/n, andn andv are the standard O(N) critical exponents
associated with the correlation length and corrections to s
ing, respectively. The values of the exponents that I h
used are4

O~1!: yt51.587~1!,

v50.84~4!,

O~4!: yt51.329~2!, ~2.13!

v50.79~4!.

4A nice review and summary of the critical exponents can
found in Ref.@12#. For the case of O~1!, we have used their sum
marized values ofn51/yt andv based on the calculation from hig
temperature~HT! expansion technique and Monte Carlo simu
tions. For comparison, some experimental results foryt are 1.61(8)
@13#, 1.58(2) @14#. For O~4!, Monte Carlo simulation forn gives
0.7525(10)@15# ~used by us!, 0.749(2)@18#. From HT expansion:
0.759(3) @19#; from e-expansion, 0.737~8! @20#. For v, the only
MC simulation result isv50.765~without quotation of error! from
@18#. Reference@20# gives v50.774(20) (d53 expansion) and
0.795~30! (e-expansion!. We have chosen the value to cover both
the errors forv.
06670
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The large volume scaling ofD^f2&c /u depends only onyt ,
which have errors; 0.1% in both cases. They have a ne
ligible effect on my final results. On the other hand, for t
case ofr c /u2, the large volume scaling depends on bothyt
andv. I will show that the errors ofv do have effects on the
large volume errors ofr c /u2. They are included in the fina
results.

For a discussion of higher-order terms in the large volu
expansion, see Ref.@5#, but the above will be adequate fo
this application. I will fit the largeLu data to the leading
scaling forms~2.12! to extract the infinite-volume limit.

The basic procedure for extracting simultaneously
ua→0 andLu→` limits of my result will be as follows.

~i! I first fix a reasonably small value of (ua)* of ua, take
data for a variety of sizesLu ~to as largeLu as practical!,
and then extrapolate the size of finite-volume correctio
fitting the coefficientsA2 andC2 of the scaling law~2.12!.

~ii ! Next, I instead fix a reasonably large physical si
(Lu)* and take data for a variety ofua ~to as smallua as
practical!, and extrapolate the continuum limit of our resu
at that (Lu)* , which corresponds to fittingB1 and D1 of
~2.8! and ~2.9!.

~iii ! Finally, I apply to the continuum result of step~ii !,
the finite-volume correction for (Lu)* determined by step
~i!. In total, I have

H D^f2&c

u J
f inal

5B12A2„~Lu!* …2d1yt, ~2.14!

H r c

u2J
f inal

5D12C2„~Lu!* …2yt2v.

There is a finite lattice spacing error in the extraction
the large volume correction~i.e., A2 andC2). In Ref. @5#, it
is argued that this source of error is formally high order
(ua)* and so expected to be small.

III. SIMULATION RESULTS

A. O„1… results for DŠf2
‹c Õu

There is a practical tradeoff between how large one
take the system size (Lu)* in order to reach the large vol

e

2-5
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XUEPENG SUN PHYSICAL REVIEW E67, 066702 ~2003!
ume limit versus how small one can take (ua)* in order to
reach the continuum limit. Figure 1~a! and the lower points
~circles! in 2~a! show, respectively, theLu dependence a
(ua)* 512 and the ua dependence at (Lu)* 5768 for
D^f2&c /u in the O~1! model. From theLu dependence, we
can see that (Lu)* 5768 is a reasonably large value
Lu—the finite-volume corrections are moderately sma
From theua dependence, we can see that (ua)* 512 is rea-
sonably small.

Figure 1~b! shows the sizeA2(Lu)2d2yt at (Lu)* 5768
when fitting theLu dependence of Fig. 1~a! to the scaling
form ~2.12a!. The result of the fit, and its associated con
dence level, depend on how many points are included in
fit. Percentage confidence levels are shown in the figure.
procedure will be to determine the best values of the fit
rameters by including as many points as possible w
maintaining a reasonable confidence level. Then to assig
error, I use the statistical error from including one less po
in the fit. This will help avoiding the underestimation o
systematic errors. The resulting estimate 0.000 133 5~50! of
the finite-volume correction is depicted by the shaded ba
Fig. 1~b! and collected in Table II. The corresponding best
is shown as the solid line in Fig. 1~a!. Even though there is
no direct use of it, I show for completeness the fit parame
A1 in Fig. 1~c!, which corresponds to the infinite-volum
value ofD^f2&c /u at (ua)* 512.

Having found the large volume extrapolated values, I w
now move on to theua→0 limit for D^f2&c /u at a fixed
physical volume (Lu)* 5768. Theoretically, from the argu

FIG. 3. As Fig. 1 but for O~4! at ua53 with reference point
(Lu,ua)* 5(144,3).
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ment of Ref.@5#, if one uses theO(a) improved formula
~2.5! to obtain the continuum approximatedD^f2&c /u, the
remaining lattice error should be;O(ua)2.

The circular data in Fig. 2~a! show theO(a) improved
simulation results by using Eq.~2.5!. First I have tried a
quadratic fit with the formB11B2(ua)2. The fitting results
for B1 are given by Fig. 2~b!. One can see while a three-poin
(ua<8) fit gives an impressive confidence limit~C.L.! of
85%, including the fourth point (ua59.6) reduces the CL to
17%. However, adding two more points keeps the CL ab
10%. Due to this feature, it is hard to determine the last po
that should be fit to the quadratic formula. Instead, I assig
the value to cover all the 85%, 17%, 13%, and 10% C
which gives20.000 383(17). The result is indicated by th
shaded area.

FIG. 4. As Fig. 2, but for O~4! at (Lu)* 5144. The triangular
data in~a! is again the naive lattice resultD^F2&L /u0 which shows
again bigger lattice errors than theO(a) improved data~circular
data!.
2-6
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MONTE CARLO STUDIES OF THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 67, 066702 ~2003!
The poor behavior of the quadratic fit makes one won
if the data is actually more ‘‘linear’’ than ‘‘quadratic.’’ To
check this, I refit the circular data using a linear functi
~2.9a!. The results are shown in Fig. 2~c!. Surprisingly, I can
fit all the data points with a very good CL. Theua→0 ex-
trapolated value in this case is20.000 3275(55), which is
very different from the quadratic fit result. The obvious li
ear behavior of the data seem to indicate that there migh
some residualO(a) coefficient in Eq.~2.5! that has not been
accounted for. Given this uncertainty, I have used both
linear and quadratic extrapolated results, combined with
error due to the finite lattice size to obtain two continuu
values~Table II!. They differ by about 10%, which is con
sidered my systematic error. The final result is assigned
cover both results and is tabulated in Tables II and I.5

As a comparison, I have also shown the naive subtrac
result given byD^F2&L /u0[(^F2&2NS/4p)/u0 vs the un-

5In Ref. @5#, for the case of O~2! model, theLu fixed data are
fitted by quadratic functions only. TheLu5144 data can be fitted
also by a linear function. TheLu5576 data on the other hand ca
be fitted by only a quadratic function for the first four points. Ho
ever, if one takes off the smallestua point, the rest four points can
be fitted very well by a straight line too. This might indicate th
there could also be some linear coefficients in the O~2! theory. For
more discussions on this possible linear coefficient, see Ref.@23#.

FIG. 5. Simulation results forr c /u2 vs physical volume for O~1!
at ua512 with (Lu,ua)* 5(768,12). We have used three valu
for v for the fits. The confidence levels for all the fits are listed
the same vertical order as the legend. The final assignment co
all the three extrapolations. The changes of the extrapola
C2(Lu)2yt1v is about one error bar due to the uncertainty inv.
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improvedu0a as the scale based on the same simulation@the
stars in Fig. 2~a!#. One can see that the finite lattice spaci
errors is more explicit with the stars, corresponding to
unimproved data, than that of the circles, corresponding
the improved ones @using Eq. ~2.5!#. Theoretically,
D^F2&L /u0 data have logarithmic3 linear and linear depen
dences onu0a.

B. r c and O„4… results

Figures 3 and 4 show similar curves for the O~4! model,
where we have taken (Lu)* 5144 and (ua)* 53 as a rea-
sonably large size and reasonably small lattice spacing.
worth noting that the largeN limit predicts the distance scal
that characterizes the physics of interest should scale
1/(Nu). That leads one to expect that the upper limit f
‘‘reasonably small’’ values ofua and lower limit for ‘‘rea-
sonably large’’ values ofLu should scale roughly as 1/N.

The fitting proceeds as in the O~1! case. For theLu-fixed
data ofD^f2&c /u ~Fig. 4!, I have again fitted the data with
both linear and quadratic functions. Both the quadratic
and the linear fit can go up toua58 while keeping good
CLs. However, theirua→0 extrapolations are also differen
~see Fig. 4 and Table II for the fitting results!. The final
continuum value is assigned to cover both extrapolations

The analysis of the result forr c /u2 in both the O~1! and
O~4! models is much the same~Figs. 5–7!. For the large
volume extrapolations, since the critical exponentv has a
larger uncertainty (;5%), I have used three different value

ers
d

FIG. 6. As Fig. 5 but for O~4! at ua53 with (Lu,ua)*
5(144,3).
2-7
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of v ~maximum, central, minimum! for both O~1! and O~4!’s
cases. The final results of theC2(Lu)2yt2v value cover all
the three different extrapolated values. This difference res
in about 1% of the error quoted in the final results forr c /u2.
For theLu fixed data, since there is no improvement ofO(a)
errors, the continuum extrapolation of the data taken at fi
Lu are fitted to linear behavior inua, following Eq.~2.8b! or
Eq. ~2.9b!. The fitting results are again summarized in Tab
I and II.

IV. CONCLUSION

Figure 8 and Table II show a comparison of the simu
tion results forD^f2&c /u with the NLO result~1.5! for N
51,2,4. TheN51,4 cases are from this paper. The result

FIG. 7. Simulation results forr c /u2 vs ua for O~1! at (Lu)*
5768 and for O~4! at (Lu)* 5144. The two straight lines in~a! are
linear fits to the data.
06670
lts

d

s

-

f

O~2! model is taken from Ref.@5#.6 In the figure, I have
actually plottedD^f2&c /(Nu), where the explicit factor ofN
factors out the leading-order dependence onN as N→`.
Amusingly, the largeN estimate forN51 seems to be the
most accurate of the three cases. This is presumably
accident—the result of the largeN approximation just hap-
pens to be crossing the set of actual values nearN51. From
Eq. ~1.5!, the error forD^f2&c /Nu should scale as 1/N2, but
there is clearly no sign of such behavior betweenN52 and
N54. This might indicate thatN54 is still too small for the
error in the largeN approximation to scale properly. It woul
be interesting to numerically study yet higherN such asN
58 or N516 to attempt to verify the details of the approa
to the largeN limit.

For the systematic error due to the possible linear beh
ior in the ua→0 extrapolation ofD^f2&c /u, so far no the-
oretical reasoning is found. It would be interesting to re
vestigate the matching calculations given in Ref.@5#.
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APPENDIX: TABULATED DATA

Tables III and IV are a collection of all the data report
in this paper. The standard integrated decorrelation timet for
a single operatorO is defined as

6If one also considers the systematic uncertainty in theua→0
extrapolation in Ref.@5#, then the result for O~2! should have a
higher systematic uncertainty.

FIG. 8. Comparison of NLO largeN result with simulation re-
sults for O~1!, O~2!, and O~4!. The solid line is the NLO largeN
result forD^f2&c /Nu and the dashed line is theN5` value.
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TABLE III. Collection of O~1! simulation data.

O~1!

Lu L/a ua rc /u2 D^f2&c /u tdecorr Nsweeps/2t

8 8 1 20.01975(18) 0.14599~50! 0.8 61617
12 12 1 20.00901(12) 0.07718~41! 0.9 58809
24 8 3 20.001194(44) 0.02577~14! 1.1 47134
36 12 3 0.000437~31! 0.01332~11! 1.1 46288
48 16 3 0.001059~10! 0.008149~54! 1.1 44135
96 8 12 0.0025401~52! 0.002530~23! 2.5 20188

144 12 12 0.00265373~60! 0.0010371~26! 2.3 590789
192 32 6 0.0020919~35! 0.000446~20! 3.5 7175
288 24 12 0.00272132~81! 20.0000604(44) 4.3 53716
384 32 12 0.00272961~71! 20.0002622(36) 5.8 19281
576 48 12 0.00273662~70! 20.0004271(50) 11.3 6731
768 128 6 0.00213384~75! 20.0004142(63) 1.6* 4795
768 160 4.8 0.00201051~74! 20.0003987(61) 2.8* 1643
768 32 24 0.00416985~16! 20.0006645(23) 3.7 13690
768 48 16 0.00315905~45! 20.0005548(39) 11.5 8800
768 64 12 0.00273822~48! 20.0004886(51) 8.9 22219
768 80 9.6 0.00249587~61! 20.0004567(42) 1.3* 7 4545
768 96 8 0.00233612~56! 20.0004429(39) 2.7* 15260

1152 96 12 0.00273936~42! 20.0005441(33) 3.7* 3480
1536 128 12 0.00273977~41! 20.0005679(33) 7.5* 1411

TABLE IV. Collection of O~4! simulation data.

O~4!

Lu L/a ua rc /u2 D^f2&c /u tdecorr Nsweeps/2t

4 4 1 20.13588(100) 1.1014~54! 0.9 53759
8 4 2 20.04051(27) 0.3673~17! 0.9 112355

12 4 3 20.0182(17) 0.193~13! 0.5 100000
16 4 4 20.00913(11) 0.11794~55! 1.6 60697
24 8 3 20.002756(22) 0.05904~11! 1.1 465111
32 16 2 20.000403(54) 0.03485~29! 1.0 25913
48 16 3 0.001792~22! 0.01641~13! 1.1 44839
72 24 3 0.002709~11! 0.006827~59! 1.4 58782

108 36 3 0.0031673~87! 0.001814~54! 1.9 26085
144 12 12 0.0062556~51! 20.0008(34) 1.7 57244
144 144 1 0.002704~17! 20.000072(95) 4.6 4416
144 18 8 0.0048967~29! 20.000431(18) 2.3 154272
144 24 6 0.0042556~34! 20.000238(22) 2.3 83972
144 30 4.8 0.0038808~76! 20.000177(48) 2.8 18519
144 36 4 0.0036449~94! 20.000204(57) 2.5 47481
144 48 3 0.003318~66! 20.000051(47) 1.6 47051
144 72 2 0.002998~12! 0.000045~67! 3.3 8952
144 8 18 0.0087128~29! 20.000018(41) 1.1 44435
144 9 16 0.0077983~67! 20.000689(62) 1.0 452306
144 96 1.5 0.0028309~98! 0.000069~60! 3.2 11499
192 64 3 0.0034097~76! 20.001234(46) 2.8 15893
288 96 3 0.0034596~63! 20.002053(42) 7.7 5792
066702-9
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1

2
1 (

n51

`
C~n!

C~0!
, ~A1!

where

C~n!5
1

~N2n! (
i 51

N2n

AiAi 1n2S 1

N (
i 51

N

Ai D 2

~A2!

is the autocorrelation function associated with the operatoA.
In practice, the sum in Eq.~A1! is cut-off whenC(n)/C(0)
s.

n
i,

06670
first drops below 0.05 because of the statistical fluctuation
C(n). The nominal decorrelation time listed in Tables III an
IV7 is the largest value of the various operators required
the computations of the Binder cumulant andD^f2&c /u by
using the canonical reweighting method~Ref. @5#!.

7Numbers with * means the simulation data that are collec
every 10tdecorr sweeps.
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@11# P. Arnold and B. Toma´šik, Phys. Rev. A64, 053609~2000!.
@12# A. Pelissetto and E. Vicari, e-print cond-mat/0012164.
@13# D.M. Sullivan, G.W. Neilson, H.E. Fisher, and A.R. Rennie,

Phys.: Condens. Matter12, 3531~2000!.
@14# B.H. Chen, B. Payandeh, and M. Robert, Phys. Rev. E62,

2369 ~2000!; 64, 042401~2001!.
@15# H.G. Ballesteros, L.A. Ferna´ndez, V. Martin-Mayor, and A.
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@16# H. Blöte, E. Luijten, and J. Heringa, J. Phys. A28, 6289

~1995!; H.G. Ballesteroset al., ibid. 32, 1 ~1999!.
@17# M. Hasenbusch, J. Phys. A34, 8224~2000!.
@18# M. Hasenbusch, Int. J. Mod. Phys. C12, 911 ~2001!.
@19# P. Butera and M. Comi, Phys. Rev. B56, 8212~1997!.
@20# R. Guida and J. Zinn-Justin, J. Phys. A31, 8103~1998!.
@21# J. Goodman and A.D. Sokal, Phys. Rev. D40, 2035~1989!.
@22# K. Binder, Phys. Rev. Lett.47, 693 ~1981!; Z. Phys. B: Con-

dens. Matter43, 119 ~1981!.
@23# X. Sun, Ph.D thesis, University of Virginia, 2002.
2-10


