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The phase transition temperature for the Bose-Einstein condengaia) of weakly interacting Bose gases
in three dimensions is known to be related to certain nonuniversal properties of the phase transition of
three-dimensional @) symmetric* theory. These properties have been measured previously in Monte Carlo
lattice simulations. They have also been approximated analytically, with moderate success, Byappgexi-
mations to ON) symmetric¢* theory. To begin investigating the region of validity of the lafg@pproxi-
mation in this application, the same Monte Carlo technique developed for @)en@del[P. Arnold and G.
Moore, Phys. Rev. B4, 066113(2001)] to O(1) and G4) theories has been applied. The results indicate that
there might exist some theoretically unanticipated systematic errors in the extrapolation of the continuum value
from lattice Monte Carlo results. The final results show that the difference between simulations and next-to-
leading order largé\ calculations does not improve significantly frad+2 to N=4. This suggests that one
would need to simulate yet largél's to see true largé\ scaling of the difference. Quite unexpectedand
presumably accidentallythe Monte Carlo result foN=1 seems to give the best agreement with the I&tge
approximation among the three cases.
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[. INTRODUCTION to T, for the Bose-Einstein condensation found by Baym
et al. is that the constart in Eq. (1.1) is?
The computation of the phase transition temperaitye

for dilute or weakly interacting Bose gases has attracted con- 1287 A{¢?).

siderable interest. Due to the nonperturbative nature of long- c=- T (1.3
distance fluctuations at the second-order phase transition at [g(—”

large distance, the calculation of corrections to the ideal gas 2

formula for T, is nontrivial. In the dilute or weakly interact- o 2. 42 2 o
ing limit, the correctiomAT.=T.— T, to the ideal gas result Where¢ =¢i+ o+ --- oy, N=2 and
T, for a homogeneous gas can be parametrizéd as

A<¢2>CE[<¢2>C]U_[<¢2>C]O (1-4)
ﬂ=casdwl’3+0(azcn2’3ln(a Ny, (1.1) represents the difference between the critical-point value of
To s ° (¢?) for the cases ofi) u being nonzero andi) the ideal

gasu=0. Thus, the computation of the first correctionto
wherea,. is the scattering length of the two-particle interac- due to interactions is related to the evaluationAgis?). in
tion, n is the number density of the homogeneous géds,a  three-dimensiona” theory.
numerical constant, an@(- - -) shows the parametric size of Having tuned to the phase transitiom, is then the Single
higher-order corrections. Bayet al.[1] have shown that the remaining parameter of the three-dimensional continufim
computation ofc can be reduced to a problem in three-theory (1.2). The dependence ofultraviolet-convergent
dimensional O(2)p* field theory. In general, Of) ¢* field  quantities oruis determined by simple dimensional analysis,
theory is described by the continuum action andu has dimensions of inverse length. Thé¢?)./u in
Eq. (1.3 is dimensionless and so is a number independent of
u in the continuum theory. Monte Carlo simulations of this

Scom:f d3x 1(v¢)2+ Er¢2+ i(¢2)2 , (1.2  quantity in G2) theory have givert=1.29+0.05[4] andc
2 2 4! =1.32+0.02[5].
One of the few moderately successful attempts to approxi-
wheregp=(¢,,0,, ...,py) is anN-component real field. | mate this result with an analytic calculation has been through

will focus exclusively on the case wheréhas been adjusted the use of the largeN approximation.(But see also the

to be at the order or disorder phase transition for this theoryourth-order linears expansion results of Ref§7]. For a

for a given value of the quartic coupling The relationship  brief comparison of the results of a wide spread of attempts
to estimatec, see the introduction to Reff6] and also Ref.

For a clean argument that the first correction is lineaadn see
Ref. [1]. For a discussion of higher-order corrections, see Refs. °This is given separately in Ref[l] as AT./T,=
[2,3]. —2mksToA{ ¢?)/3%%n and the identification ofi as 9Gr%as./\2.
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TABLE I. Simulation results foN=1,2,4 and the NLO larg& results forA(¢2)C/u. The difference
column shows the percentage excess of the magnitude of theNapgproximation result over the magnitude
of the simulation resuliN=2 simulation results are quoted from RES].

A{p?)Iu _
(¢ re/u?(w=u/3)
N Simulation LargeN Difference Simulation
1 —0.000494(41) —0.0004990 —-1(8)% 0.0015249(48)
2 (Ref.[5]) —0.001198(17) —0.001554 +30(2)% 0.0019201(21)
4 —0.00289(18) —0.003665 +27(8)% 0.00255816)
[8].) The procedure is to calculata({¢?)./u for O(N) rMS() - tMS(u,)  (N+2)

theory in the limit whereN is arbitrarily large, and then (1.6

substitute the actual valud=2 of interest into the result. ) ) )
The largeN result was originally computed at leading order N Sec. Il, I briefly review the algorithm and the necessary
in 1/N by Baym, Blaizot, and Zinn-Justif8] and was ex- background materials and formulas for improving the ex-

tended to next-to-leading ordéXLO) in 1/N by Arnold and trapolations of the continuum and infinite-volume limits.
Tomask [10], giving® Most of the technical details can be found in Réf]. Sec-

tion Il gives the simulation results and analysis. Section IV
is the conclusion from comparing the numerical results with

A(¢%)c __ N 0527 198+ oN-3)|. (@9 the NLO largeN calculation(1.5).

n—.
u? u? 18(4m)° ",

— 1
u 9672 N
Il. LATTICE ACTION AND METHODS

SettingN=2, one obtainc~1.71, which is roughly 30% The action of the theory on the lattice is given by
higher than the results obtained by the Monte Carlo simula- L .
tion of O(2) theory. Considering thall=2 has been treated P > Uo
as large in this approximation, the result is fairly encourag- S'at=a3; Eq)'at(_v'at)q)'at+ §r0®'at+ H(Cp'at)z :
ing.
The goal of the present work is to further explore the (2.1
applicability of the largeN result(1.5) by testing it for other
values ofN. | have applied to other Q) models the same wherea is the lattice sizénot to be confused with the scat-
techniques used in Ref5] to simulate the @) model. In  tering lengthas). | will work on simple cubic lattices with
this paper, | report the measurement &f$?)./u for the  cubic total volumes and periodic boundary conditions. As in
O(1) and Q4) theories. The final results, compared to theRef. [5] and as reviewed further below, the bare lattice op-
large N approximations of Eq(1.5), are given in Table I erators and couplingsd{,,;, ®2,.fo,Uo) are matched to the
As a byproduct of the analysis, | also report the measurecontinuum, using results from lattice perturbation theory to

ment of the critical value of r. The coefficientr requires  improve the approach to the continuum limit for finite but
ultraviolet renormalization and so is convention dependentsmg]| Jattice spacing.

In Table |, | report the dimensionless continuum values of | shall use the improved lattice Laplacian
r./u? with r. being defined by dimensional regularization
and modified minimal subtractioMS) renormalization at a ) B _22 1 4 5
renormalization scal@ set tou/3. Among other things, this Ve =a = | P xt2a)+ g (x+al) = 5 0(x)
guantity can be related to the coefficient of the second-order
(a2n??) correction toAT, [2,11]. One can convert to other

choices of theMS renormalization scal¢_L by the (exac})
identity

4 1 .
+§<I>(x—a|)—1—2<1>(x—2a|) , (2.2

which (by itself)y hasO(a*) errors, rather than the standard
unimproved Laplacian

3If combining Eqgs(1.3) and(1.5), note that Eq(1.3) only applies
in the caseN=2, which corresponds to a_smgle-compom_ant |c_ieal Vf,q)(x):a’zz: [®(x+ai)—2D(x) +D(x—ai)],
gas. Alternatively, as a theoretical excercise, one could imagine a i
gas where each boson had a degenerate $¢t2ointernal quantum (2.3
states withU(N/2) symmetry for any evem. In this case,T,
would be proportional to\, and Eq.(1.3) should have an additional Which hasO(a?) errors. Readers interested in simulation re-
factor of 2N on the right-hand side. This factor of\Lin Eq. (1.3 sults with the unimproved kinetic term should see R28].
would cancel the overall factor & in Eq. (1.3) when the two are Because the only parameter of the continuum thébrg)
combined. at its phase transition is, the relevant distance scale for the
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physics of interest is of order d/by dimensional analysis.

To approximate the continuum infinite-volume limit, one  &ry=—

needs lattices with total linear sitg large compared to this
scale and lattice spacirggsmall compared to this scale. As a
result,ua is the relevant dimensionless expansion parameter

PHYSICAL REVIEW E 67, 066702 (2003

for perturbative matching calculations intended to eliminatgynere, for the improved Laplacia®@.2),

lattice spacing errors to some orderanThe analogous di-
mensionless parameter that will appear in the later discus-
sions of the large volume limit ik u.

A. Matching to continuum parameters

To account for the lattice spacing errors, | have adapted
the perturbative matching calculations to improve lattice
spacing errors given in Ref5], where the details of the
calculations can be found. Here | will simply collect the
results from that reference. The lattice action expressed in
terms of continuum parameters is written in the form

u+

(N+2) X (N+2)

Eua+m Cs+In —-33¢
(2.6
3 =2.75238391130752, (2.79
£=—0.083647053040968, (2.7b
C,~0.0550612, (2.70
C,=0.03344161, (2.70
C;~—0.86147916, (2.79
C,=0.282. (2.7

Z Z,
Sa=a’ | 5 (V) + 5 (14 6r) ¢+

The continuum approximate value fdr($?), is theoreti-

cally expected to have the form

1]
(62,

As shown in Ref[5], the result of this improvement is
that at fixed physical system sitel, the lattice spacing error
of A{#?)./u should beO(a?). However, as will be shown
in the following, my simulation results indicate that there
might still exist some linear coefficients even after applying
formula (2.5). | assign an error to my continuum extrapola-
tions that covers both linear and quadratic extrapolations.
This has produced about 10% systematic error in the final
value of A{¢?)./u. The extrapolation of ./u? on the other

A(¢?)c=Z ()i~ 6%+ 0(a%). (2.9 hand hag(a) error, since no improvement has been made.

Overall, the fitting formulas for the data taken at fixed are
For the improved Laplacian, the matching calculations haveiven as
been done to two-loop level (2 for Z,, Z,, or, andéu,

and three loops (3 for 8¢2, yielding [A<¢2>c} _B,+B,(ua)’ (2.89
U =b;1TB , :
Lu
N2 N(N+2) 3¢ 3
Sy =—1+ su——Nra .
47a 6 (4m) 47 [u_;] _D,+D,(ua), .80
N+2)\? (N+2) Lu
— ] &3+ [C,—33C,;—3C,
18 for a quadratic fit ofA( ¢?)./u, and
2
— | Nu*a Al g2
+ein(ap)]| o3 (2.63 [ (¢ >c] _B,+Blua), (2.93
u Lu
(N+8) & , [(N*+6N+20)( ¢ \? ;
Uy = —uvat+|——— | — el _
6 A4 36 47 [uz] =D;+Dy(ua), (2.9p
Lu
(5N+22 C
~— 9 ﬁ ua?, (2.6D  for a linear fit of A($?)./u.
(N+2) C, B. Algorithm and finite-volume scaling
Z¢,2|=1+1—8WU282, (2.69 Working in lattice units 4=1) with the lattice action
(2.4), | update the system by heat bath and multigrid meth-
) X ods[21]. At each level of the multigrid update, | perform
7 1 (N+2) & N N+2\7 & overrelaxation updates. Statistical errors are computed using
ra 6 4n' 2 6 A7 the standard jackknife method.
The strategy is to vary at fixed u to reach the phase
~(N+2) G (ua)? transition point. In order to define a nominal “phase transi-
6 (477)z ' tion” point in a finite volume, | use the method of Binder
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FIG. 1. (a) Shows the simulation result fax($?)./u vs physi-
cal volume atua=12 for O1); (b) is the result of the difference
between the (768,12)point and the infinite extrapolatioKg) is the
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FIG. 2. Simulation results foA{ ¢?)./u vs ua at fixed physical

volume (Lu)* =768 for O1). The circular data are obtained from

obtained

using

the naive lattice

Eq. (2.5, with 842 being given by Eq(2.69. The star data are
result\(®2) =((P?)
—NZX/4)/ug. It has linear-linearxlogarithmictquadratic depen-

Lu—co extrapolations; and since we used the fitting formula for yence orua. (b) gives the fitting results for the quadratic fit afal
A(¢?)Iu at (768,125 (2.5), this difference depends only on the gives the fitting results for the linear fit.
results ofA, but not onA;. In both(b) and(c), the shaded areas are

the quoted results. The confidence levels are given as the percentage
numbers on top of the fitted values. “NA” stands for “nonappli-
cable,” which means the number of the fitting parameters equals the

number of fitted points. The numbers shown in all graphs and table¥he nominal phase transition is defined as occurring when

are dimensionless.

cumulants[22]. The Binder cumulant of interest is defined

by

o=t
(@97

wherea is the volume average ap,

(2.10

b= %J d3®x ¢(X).

(2.11

C=C*, whereC* is a universal value that improves con-

vergence to the infinite-volume limilC* depends on the
shape and boundary conditions of the total lattice volume but
not on the short distance structure. For cubic lattice volumes

with periodic boundary condition<G* =1.603(1) for Q1)

[16] and C*=1.095(1) for @4) [17]. | have checked that

the errors orC* are not significant for the purposes of this

application. Therefore, | have used the central values for the
nominal C*.
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TABLE 1. Fitting results forA{¢?)./u andr./u? using formula(2.15. In the case of\{ ¢?)./u, both a linear fit result and a quadratic
fit result for B, are given. The final values are assigned to cover both fit results.

A(¢?)clu

A+ A (Lu) 9V it B1+B,(ua)? fit B,+Bj(ua) fit A{p?)Iu=B;— A X (Lu) "9
N (Lu,ua)* A, A, X (Lu) 9tn B, O(ua)? O(ua) Final
1 (768,12 —0.0006199(40) 0.000138%0) —0.000383(17)—0.003275(55)—0.000517(18)—0.0004610(74)—0.000494(41)
4 (144,3 —0.003023(92)  0.0029782) 0.00000726)  0.00016337) —0.002971(96) —0.002815(99) —0.00289(18)

re/u?

Cy+Cy(Lu) V@ fit D,+D,(ua) fit
N (Lu,ua)* o Co(Lu)y Ve D, re/u?=D;—Cy(Lu) Y@
1 (768,13 0.0027400128) —0.00000178(22) 0.00152818) 0.001524948)
4 (144,3 0.003503%2) —0.000183(12) 0.00237%50) 0.00255816)

In practice, it never happens that the simulation is donéThe large volume scaling af({ ¢?)./u depends only oy,
precisely atr where C=C*. | instead simply simulate at which have errors~ 0.1% in both cases. They have a neg-
somer =rg, close to it. | then use canonical reweighting of ligible effect on my final results. On the other hand, for the
the time series data to analyess nearr g, and determing  case ofr./u?, the large volume scaling depends on bgth
andA({¢?) atC=C*. andw. | will show that the errors of» do have effects on the

A renormalization group analysis of the scaling of finite- large volume errors of./u?. They are included in the final
volume errors shows that, when the method of Binder cumuresults.
lants is used, the values af($?). andr, scale at large For a discussion of higher-order terms in the large volume
volumes ag5] expansion, see Ref5], but the above will be adequate for

this application. | will fit the largeLu data to the leading
A<¢2>c~ —d+y, scaling forms(2.12) to extract the infinite-volume limit.
u =ArtAxlu) ’ (2123 The basic procedure for extracting simultaneously the
ua—0 andLu—< limits of my result will be as follows.
re o (i) I first fix a reasonably small value ofi@)* of ua, take
?:C1+C2(Lu) b (2.12h data for a variety of sizeku (to as largeLu as practical
and then extrapolate the size of finite-volume corrections,
for fixed ua. Here d=3 is the dimension of spaceg; fitting the coefficientsA, andC, of the scaling law(2.12).
=1/v, andv andw are the standard @) critical exponents (i) Next, | instead fix a reasonably large physical size
associated with the correlation length and corrections to scallL u)* and take data for a variety afa (to as smallua as
ing, respectively. The values of the exponents that | haveractica), and extrapolate the continuum limit of our results

used aré at that Cu)*, which corresponds to fittin@, and D, of
(2.8) and(2.9.
O(1): y,=1.5811), (i) Finally, | apply to the continuum result of stej),
the finite-volume correction forl{u)* determined by step
0=0.844), (i). In total, | have
2
o(4): y,=1.3292), (2.13 {A<¢> >c] B - A(LW) Y, (214
final

w=0.794).

r
[?] =D3—Cp((Lu)*) .
4A nice review and summary of the critical exponents can be final

found in Ref.[12]. For the case of (1), we have used their sum- There is a finite lattice spacing error in the extraction of

marized values of = 1/y; andw based on the calculation from high - .
temperature(HT) expansion technique and Monte Carlo simula- j[he large volume correctiofi.e., A, andC,). In Ref.[5], it

tions. For comparison, some experimental resultyfare 1.61(8) 'S argued that this source of error is formally high order in
[13], 1.58(2)[14]. For O4), Monte Carlo simulation fon gives ~ (U&)* and so expected to be small.

0.7525(10)[15] (used by ug 0.749(2)[18]. From HT expansion:

0.759(3) [19]; from e-expansion, 0.738) [20]. For w, the only Il. SIMULATION RESULTS

MC simulation result is» = 0.765(without quotation of errgrfrom 2

[18]. Reference[20] gives w=0.774(20) =3 expansion) and A. O(D) results for A(¢%)c/u
0.79530) (e-expansioi We have chosen the value to cover both of ~ There is a practical tradeoff between how large one can
the errors forw. take the system size_(1)* in order to reach the large vol-
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(circles in 2(a) show, respectively, théu dependence at  £7>0, F 3
U T4 o B
(ua)*=12 and theua dependence atL{)* =768 for 3 25q0% F -
A(¢?%)c/u in the Q1) model. From theLu dependence, we 23290 | E
can see thatl(u)*=768 is a reasonably large value of  4oa0® F |, gyt

(=4
—
N
w

Lu—the finite-volume corrections are moderately small. 4 5 6 7 8 9 10 11 12 13 14 15
From theua dependence, we can see thag)* =12 is rea- (b) largestus:used for:the linear fit

sonably small. ) ,
. . e FIG. 4. As Fig. 2, but for @) at (Lu)* =144. The triangular
& d-y * =
Figure 1b) shows the sizéA(Lu) tat (Lu)* =768 data in(a) is again the naive lattice resut{ ®2), /uq which shows

when fitting theL.u dependence. of Fig._(a) to th? scaling . again bigger lattice errors than tl@(a) improved data(circular
form (2.123. The result of the fit, and its associated confi- 44y

dence level, depend on how many points are included in the

fit. Percentage confidence levels are shown in the figure. My ) )

procedure will be to determine the best values of the fit paMent of Ref.[5], if one uses theD(a) improved formula

rameters by including as many points as possible whild2-5 to obtain the continuum approximated ¢*)./u, the

maintaining a reasonable confidence level. Then to assign d&maining lattice error should be O(ua)?.

error, | use the statistical error from including one less point The circular data in Fig. (@) show theO(a) improved

in the fit. This will help avoiding the underestimation of simulation results by using Eq2.5). First | have tried a

systematic errors. The resulting estimate 0.000 1838)50f  quadratic fit with the fornB;+ B,(ua)2. The fitting results

the finite-volume correction is depicted by the shaded bar irfior B, are given by Fig. &). One can see while a three-point

Fig. 1(b) and collected in Table Il. The corresponding best fit(ua<8) fit gives an impressive confidence li{i€.L.) of

is shown as the solid line in Fig.(d. Even though there is 85%, including the fourth pointua=9.6) reduces the CL to

no direct use of it, | show for completeness the fit parametel 7%. However, adding two more points keeps the CL above

A; in Fig. 1(c), which corresponds to the infinite-volume 10%. Due to this feature, it is hard to determine the last point

value of A(¢?)./u at (ua)* =12. that should be fit to the quadratic formula. Instead, | assigned
Having found the large volume extrapolated values, | willthe value to cover all the 85%, 17%, 13%, and 10% CLs

now move on to thasia—0 limit for A(¢?)./u at a fixed which gives—0.000383(17). The result is indicated by the

physical volume Lu)* =768. Theoretically, from the argu- shaded area.
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FIG. 5. Simulation results far, /u- vs physical volume for Q) (b)  smallest Lu used for the fit

atua=12 with (Lu,ua)*=(768,12). We have used three values Fig 5 As Fig. 5 but for @) at ua=3 with (Lu,ua)*
for w for the fits. The confidence levels for all the fits are listed in =(144,3).
the same vertical order as the legend. The final assignment covers

all the three extrapolations. The changes of the extrapolategm rovedu,a as the scale based on the same simuldion
C,(Lu) ¥ “ is about one error bar due to the uncertaintywin P 0

stars in Fig. 2a)]. One can see that the finite lattice spacing
The poor behavior of the quadratic fit makes one wondeerrors is more explicit with the stars, corresponding to the
if the data is actually more “linear” than “quadratic.” To unimproved data, than that of the circles, corresponding to
check this, | refit the circular data using a linear functionthe improved ones[using Eq. (2.5]. Theoretically,
(2.99. The results are shown in Fig(@. Surprisingly, | can  A(®?), /u, data have logarithmiclinear and linear depen-
fit all the data points with a very good CL. Theas—0 ex-  dences ornupa.
trapolated value in this case is0.000 3275(55), which is
very different from the quadratic fit result. The obvious lin- B. r. and O(4) results
ear behavior of the data seem to indicate that there might be
some residuaD(a) coefficient in Eq(2.5) that has not been
accounted for. Given this uncertainty, | have used both th
linear and quadratic extrapolated results, combined with th
error due to the finite lattice size to obtain two continuum
values(Table Il). They differ by about 10%, which is con-
sidered my systematic error. The final result is assigned t
cover both results and is tabulated in Tables Il and .
As a comparison, | have also shown the naive subtracted®
result given byA(®?), /uy=((®2)— N3 /4m)/u, vs the un-

Figures 3 and 4 show similar curves for thé4Dmodel,
é(vhere we have takenL{1)* =144 and (ja)* =3 as a rea-
éonably large size and reasonably small lattice spacing. It's
worth noting that the largB! limit predicts the distance scale
that characterizes the physics of interest should scale as
/(Nu). That leads one to expect that the upper limit for
reasonably small” values ofia and lower limit for “rea-
nably large” values oL u should scale roughly asN/
The fitting proceeds as in the(D case. For thd u-fixed
data of A{¢?)./u (Fig. 4), | have again fitted the data with
both linear and quadratic functions. Both the quadratic fit
and the linear fit can go up toa=8 while keeping good
fitted by quadratic functions only. Theu= 144 data can be fitted CLs. prever, theiua—0 extrapolf?ltl.ons are also dlfferent
also by a linear function. Theu=576 data on the other hand can (see_ Fig. 4 and _Table_ Il for the fitting resyltsThe f'r_'al
be fitted by only a quadratic function for the first four points. How- CONtinuum value is assigned to cover both extrapolations.
ever, if one takes off the smallest point, the rest four points can The analysis of the result far./u® in both the @1) and
be fitted very well by a straight line too. This might indicate that O(4) models is much the sam@igs. 5-7. For the large
there could also be some linear coefficients in th@)Gheory. For ~ volume extrapolations, since the critical exponenthas a
more discussions on this possible linear coefficient, see[R8F. larger uncertainty{+5%), | have used three different values

5In Ref. [5], for the case of @) model, theLu fixed data are

066702-7



XUEPENG SUN

0007 T T T T T T T T T T T T T T T T T
0.0065 - e E
0.006 f- ,9 -
0.0055 - // E
0.005 - & E
0.0045 - e/ e
0.004 - & ,_,9"’ E

o, 00035 F 9«9 e E

=, 000 b )e’_,.—-e E
= 00025 f ° o -
0.002 - OO E
sy O  O(l); Lu=768 _
0,001 - <& O@); Lu=144 R
0.0005 - ——— linear fit of the left eight points -
0E .—.— linear fit of the left three points =

0.0005 - E

001 B v L b b L
5 10 15 20 25 30

(a) ua
T I T 1 1

. 000153 | ) 3

> o)

£

2 i 17 § 1

§ 0.001525 |- -

= [ NA ]

& [ ]

£ 000152 | -

o o 4

g . 0

0.001515 |- ® -
0.00151 L L L L 1 L
0 5 10 15 20 25 30
(b) largest ua used for the linear fit for O(1) at Lu=768
0.00255 T T T T T T T T T T T T T T T T T T T T T T T T T
[ NA ]

ag 00025 .

=] L -

o [

=3 I

° - -

g — -

£ 000245 1

= [ 15

g ]

% 0.0024 - 2% 29 -

30

2 : 2 o} 13 ]

i ; $ 39 o ]

3000235 | -

[ o ]
L m 4
FOX o2 3 NI EPU U SR EFU SR SPU NI RPU SISV BV B B B

1 2 3 4 3 6 7 8 9 10 11 12 13
(c) largest ua used for the fit of O(4) at Lu=144

FIG. 7. Simulation results for./u? vs ua for O(1) at (Lu)*
=768 and for @4) at (Lu)* =144. The two straight lines ifa) are
linear fits to the data.

14 15

of w (maximum, central, minimupfor both Q1) and 4)’s
cases. The final results of th@&,(Lu) Yt~ value cover all
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-0.0002 |- —— NLO large N result 7

——— N — o limit of large N calculation |

-0.0004

-0.0006

A<d’> / Nu

-0.0008

-0.001

-0.0012 |~ -1

0 1 2 3 4 5 6 i 8

FIG. 8. Comparison of NLO largdl result with simulation re-
sults for 1), O(2), and @4). The solid line is the NLO larg®&
result forA{¢$?)./Nu and the dashed line is tHé=o value.

O(2) model is taken from Ref[5].% In the figure, | have
actually plottedA( ¢?)./(Nu), where the explicit factor dfl
factors out the leading-order dependence Mras N— .
Amusingly, the largeN estimate forN=1 seems to be the
most accurate of the three cases. This is presumably an
accident—the result of the lardé approximation just hap-
pens to be crossing the set of actual values iNeaf. From
Eq. (1.5), the error forA( ¢?)./Nu should scale as W, but
there is clearly no sign of such behavior betwéé&n 2 and
N=4. This might indicate thall=4 is still too small for the
error in the largeN approximation to scale properly. It would
be interesting to numerically study yet highdrsuch asN
=8 or N=16 to attempt to verify the details of the approach
to the largeN limit.

For the systematic error due to the possible linear behav-
ior in theua—0 extrapolation ofA(¢$?)./u, so far no the-
oretical reasoning is found. It would be interesting to rein-
vestigate the matching calculations given in Héf.
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errors, the continuum extrapolation of the data taken at fixed

Lu are fitted to linear behavior ina, following Eq.(2.8b or

APPENDIX: TABULATED DATA

Eqg. (2.9b. The fitting results are again summarized in Tables

| and II.

IV. CONCLUSION

Tables Ill and IV are a collection of all the data reported
in this paper. The standard integrated decorrelation tirfoe
a single operato© is defined as

Figure 8 and Table Il show a comparison of the simula- 8 one also considers the systematic uncertainty in iae-0

tion results forA(¢?)./u with the NLO result(1.5) for N

extrapolation in Ref[5], then the result for @) should have a

=1,2,4. TheN=1,4 cases are from this paper. The result ofhigher systematic uncertainty.
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TABLE lll. Collection of O(1) simulation data.

o(1)
Lu L/a ua re/u? A{p?)lu Tdecorr Nsweepl2™
8 8 1 —0.01975(18) 0.145980) 0.8 61617
12 12 1 —0.00901(12) 0.077181) 0.9 58809
24 8 3 —0.001194(44) 0.025714) 1.1 47134
36 12 3 0.00043B1) 0.0133211) 1.1 46288
48 16 3 0.0010540) 0.00814954) 11 44135
96 8 12 0.00254052) 0.00253023) 25 20188
144 12 12 0.002653780) 0.001037126) 2.3 590789
192 32 6 0.00209185) 0.00044620) 3.5 7175
288 24 12 0.002721321) —0.0000604(44) 4.3 53716
384 32 12 0.002729611) —0.0002622(36) 5.8 19281
576 48 12 0.002736620) —0.0004271(50) 11.3 6731
768 128 6 0.002133845) —0.0004142(63) 1% 4795
768 160 4.8 0.002010%14) —0.0003987(61) 278 1643
768 32 24 0.0041698%6) —0.0006645(23) 3.7 13690
768 48 16 0.003159085) —0.0005548(39) 115 8800
768 64 12 0.002738228) —0.0004886(51) 8.9 22219
768 80 9.6 0.002495881) —0.0004567(42) 13 4545
768 96 8 0.002336136) —0.0004429(39) 2% 15260
1152 96 12 0.002739862) —0.0005441(33) 3% 3480
1536 128 12 0.002739741) —0.0005679(33) 75 1411
TABLE IV. Collection of O(4) simulation data.
O(4)
Lu L/a ua ro./u? A{Pp?)lu Tdecorr Nsweepl2™
4 4 1 —0.13588(100) 1.10184) 0.9 53759
8 4 2 —0.04051(27) 0.367137) 0.9 112355
12 4 3 —0.0182(17) 0.1933) 0.5 100000
16 4 4 —0.00913(11) 0.117985) 1.6 60697
24 8 3 —0.002756(22) 0.059@41) 1.1 465111
32 16 2 —0.000403(54) 0.034839) 1.0 25913
48 16 3 0.0017922) 0.0164113) 1.1 44839
72 24 3 0.00270@1) 0.00682759) 1.4 58782
108 36 3 0.00316187) 0.00181454) 1.9 26085
144 12 12 0.006255%61) —0.0008(34) 1.7 57244
144 144 1 0.0027047) —0.000072(95) 4.6 4416
144 18 8 0.00489629) —0.000431(18) 2.3 154272
144 24 6 0.00425584) —0.000238(22) 2.3 83972
144 30 4.8 0.00388@136) —0.000177(48) 2.8 18519
144 36 4 0.00364494) —0.000204(57) 2.5 47481
144 48 3 0.00331®6) —0.000051(47) 1.6 47051
144 72 2 0.0029982) 0.00004%67) 3.3 8952
144 8 18 0.008712829) —0.000018(41) 11 44435
144 9 16 0.00779887) —0.000689(62) 1.0 452306
144 96 15 0.00283@98) 0.00006960) 3.2 11499
192 64 3 0.00340976) —0.001234(46) 2.8 15893
288 96 3 0.00345963) —0.002053(42) 7.7 5792
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1
r=s+ 3 I (A1)

where

is the autocorrelation function associated with the operator
In practice, the sum in EqA1) is cut-off whenC(n)/C(0)

PHYSICAL REVIEW E67, 066702 (2003

first drops below 0.05 because of the statistical fluctuation in
C(n). The nominal decorrelation time listed in Tables Il and
IV is the largest value of the various operators required in
the computations of the Binder cumulant afd¢?)./u by
using the canonical reweighting meth(Ref. [5]).

"Numbers with * means the simulation data that are collected
every 10yecorr SWEEPS.
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